If it's not what You are looking for type in the equation solver your own equation and let us solve it.
19=4x^2
We move all terms to the left:
19-(4x^2)=0
a = -4; b = 0; c = +19;
Δ = b2-4ac
Δ = 02-4·(-4)·19
Δ = 304
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{304}=\sqrt{16*19}=\sqrt{16}*\sqrt{19}=4\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{19}}{2*-4}=\frac{0-4\sqrt{19}}{-8} =-\frac{4\sqrt{19}}{-8} =-\frac{\sqrt{19}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{19}}{2*-4}=\frac{0+4\sqrt{19}}{-8} =\frac{4\sqrt{19}}{-8} =\frac{\sqrt{19}}{-2} $
| 9=k/2+12 | | 4/10=x/10 | | 2+g=7 | | -4(r+3)+8(-2r+8)=12 | | 200=4c-20 | | 24=-12r | | -5+k=k-4 | | 6(2x—3)=18 | | m+13=-20 | | -4y+15=-1 | | 2u^2-11u-20=0 | | 7r-8r=-3r+8 | | -3.6(7.1x+1.7)=126.792 | | -36=6(w-3)-8w | | 50=t*5 | | m+10=-20 | | 2(1/4)x=1(1/4)x-8 | | 2x+15+6x=1 | | 4t+7=4(t+4)−16 | | -88=-8+8(m-4) | | (6x-42)(x+28)=60 | | 2(1/4)x=1(1/4)-x | | -3=6x=6-5=6x-2 | | 3=v/19.2 | | -8(3s+6)=-34-9s | | (9*0)+16=h | | 6+9=6+n | | m=+8=17 | | 54.32=2.8b | | 3x5=7 | | 55/16=5/4k | | k(11-10)=87 |